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Asymptotic Properties of a Simple Random Motion 
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A random walker in ~N is considered. At each step the walker picks a point in 
NN from a fixed finite set of destination points. Having chosen the point, the 
walker moves a fraction r (r< 1) of the distance toward the point along a 
straight line. Assuming that the successive destination points are chosen 
independently, it is shown that the asymptotic distribution of the walker's 
position has the same mean as the destination point distribution. An estimate is 
obtained for the fraction of time the walker stays within a ball centered at the 
mean value for almost every destination sequence. Examples show that the 
asymptotic distribution could have intricate structure. 
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1. I N T R O D U C T I O N  

Cons ide r  an indecisive walker  in ~N who wants  to reach one of the 
des t ina t ions  con ta ined  in a fixed finite des t ina t ion  set, D = { d l ,  de ..... dk}.  

The walker  s tar ts  f rom a po in t  x0 and  chooses  a des t ina t ion  po in t  dj with 
p robab i l i t y  pj .  H a v i n g  chosen dj, it walks f rom Xo t o w a r d  dj a long  the 
d i rec t ion  of  dj - Xo a d is tance  r ldj - Xol, where 0 < r < 1 is a constant .  Once  
it reaches Xo + r ( d j - X o ) ,  the walker  s tops  and  picks a des t ina t ion  from D 
independen t ly  of  the previous  choice, and  repeats  the walk. In  this pape r  I 
s tudy some of  the a sympto t i c  p roper t ies  of the pos i t ion  of the r a n d o m  
walker  descr ibed  above.  This  p r o b l e m  arose  in the s tudy of  a neura l  
ne twork  model ,  (1) t hough  the p rob lem is in teres t ing on its own as a 
p r ob l em in p robab i l i t y  theory.  
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2. THE M O D E L  

Let us denote the position of the walker after the nth step by Xn and 
the destination random vector chosen before the nth step by Y~. Assume 
that { Y,} ~ are mutually independent, with a common probability mass 
distribution n = {Pl, P2 . . . . .  Pk}, Z~ Pi = 1. From the description of the walk 
it is clear that X. satisfies the following recursion relation: 

J f n = X ~ _ l + r ( Y n - X n _ ~ ) = ( 1 - r ) X ~  l + r Y  n ( 1 )  

n - I  
= ( 1 - r ) " x o +  ~ r ( 1 - r ) J Y ,  j (2) 

j - -0  

Denote the probability distribution of X-, (supported on a finite set 
in ~N) by /~,. Let {Y',} be a sequence of i.i.d, random vectors with the 
same common distributions (~z) as {Y,}. Consider the random series 
Z]~ r(1 - r )  j -  ~ Yj. From the boundedness of Y~ it easily follows that this 
series converges for every choice of destination sequence, to a random 
vector Z. Let us denote the distribution of Z by v. 

I_emma 1. Xn converges in distribution to Z. 

ProoL Let 

X ' n = ( 1 - r ) n x o + ~ r ( 1 - r ) J - l  Y] (3) 
1 

Let #'n be the distribution of 2"n. Since { Y,~} and {Y',} are i.i.d, ran- 
dom vectors with the same common distribution, #,  =/~',. Since ( 1 -  r) ~ x0 
converges to zero as n tends to c~, X'n converges to Z for every choice of 
destination sequence. This implies/-t'n ~ v, since #,, = ~'n, we have #,  ~ v. 

Remark. Hereafter, unless specified otherwise, almost surely will 
mean for almost every destination sequence with respect to the infinite 
product of ~. Note that while X'n converges for all destination sequences, 
X, diverges almost surely. (Easily proved by using the Borel-Cantelli 
lemma.) 

3. ORBIT STRUCTURE:  A S Y M P T O T I C  PROPERTIES 

We have seen that /~, converges in distribution to v. From the 
definition of v it is clear that v is supported on the convex hull C of 
{dl, d2 ..... dk}. It is clear from Eq. (1) that if the walker starts in the convex 
hull, it stays there. If C has nonzero volume in Eu, then it can be shown 
that starting from anywhere in R N, after a finite number of steps the walker 
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will be in C (almost surely). If C is a lower-dimensional manifold in ~N, 
then it can be seen that the distance from X, to C converges to zero, 
almost surely. Given these observations, for simplicity I assume that the 
walk starts from inside C. I now compute the mean and dispersion of Z, 

E ( Z ) =  ~, r ( 1 - r )  j I E ( Y j ) = E ( Y ' ~ ) = 2  
j = l  

Thus, the mean value of v is same as that of the destination vector Y1. 
Here E ( I Z - Z [  z) measures the dispersion of v about its mean Z, 

N N 
E (  I Z -  Z[  2) = 2 E ( g ( k ) -  Z(k) )2  = ~ Var(Z(k~) 

1 1 

where the random variable Z ~) is the kth component of Z, 

Var(Z (k)) = Var r(1 - r) j 1 yj(k~ = ~ Var(r(1 -- r) J 1 ~,~k~) 
1 

Since { Yj~)} are independent, this is equal to 

Therefore, 

where 

• rZ( l_r )2( i_ l )Var(Y , (k ) )  r V y,(k)) 
1 = ~ ' r ~  F ar( 

N 
- - 2  r 

E ( I Z - Z I  )=~L~_ r ~ Var(Y ' (k ) )=Br  
k = l  

(4) 

U Var(Y;(~)) 

- - L - 5 - 7  1 

It follows from the Markov inequality that 

P ( I Z - Z I  > ~) <~ E ( I Z -  212) ~2 (5) 

for all e > O. 
I now estimate the mean fraction of time (steps) the walker spends 

outside a ball of radius ~ centered at Z. 

k e m m a  2. L e t A ~ = { x ~ R N [  fx -Z]~>~}:  

Br zA:(x.) =lim+~ ~'(Ix. 21>~) ~:.o~lim E - ~< ---~ ( 6 )  
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Proof. 

P(IXn -- 21 >1 ~) = P(IX', -- 21 >1 ~) 

X', . ~ ) Z almost surely. Therefore, 

P ( I X , - Z I > ~ ) - - P ( I X ' , - 2 1 > ~ )  , ~  , P ( I Z - Z I ~ > ~ )  

Thus, we have 

1 K B r  

7 

Having obtained an estimate of the mean fraction of time the walker 
spends outside a ball centered at 2, I now obtain an estimate for the same 
quantity, pointwise, i.e., for almost every destination sequence. While the 
next result implies Lemma 2, the proof of Lemma 2 given above is much 
simpler than the proof of the next result. This is the reason for proving 
Lemma 2 separately. 

4. PROPERTIES OF M A R K O V  C H A I N  {X,,} 

From the independence of { Yn} it easily follows that the sequence 
{Xn} is a Markov chain with state space C. Denote the transition 
probability kernel for {Xn} by P(x, .). Since X, is a function of {Yi}7 and 
xo, {X,} can be defined on the destination sequence probability space 
(D~,  n~), where 

D ~ =  X Di, Di=D,  n ~ = X z c i ,  7ri=r~ 
i=1 1 

I show that v is a stationary initial distribution for {X, }. Let Xo be a ran- 
dom vector in C with a distribution v. Observe that the distribution of 
Z ~  r(1 - r )  j -  1 Yj+I is v. Therefore the distribution of X1 = (1 - r )  X o + r Y 1 
is same as the distribution of 

( 1 - r )  ~ r ( 1 - r )  j-1 Yj+l +rY1 
1 

which is v. Let (Q, Q) be a probability space on which the initial random 
vector Xo is defined. The Markov chain {X,} with an initial random vector 
Xo = W, denoted by {X,(W)}, can be defined on (t2, Q) • (D~, ~z~). It is 
clear from the definition of Xn that there is a coupling of {X,(W1)} and 
{X,(W2)} on (12, Q) • (D~,  ~ )  satisfying 

X ' n ( W l ) - - X n ( W 2 )  = (1 --r)" ( W  1 --  W2) (7)  
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where W1 and W2 are random vectors on f2, taking values in C. Let {Xn} 
denote the Markov chain with initial distribution v. 

T h e o r e m .  {Xn} is an ergodic Markov chain. 

Proof. Suppose C1 and C2 are two invariant subsets of C, with 
v(C1)>0,  v(C2)>0.  If one restricts v to C1 and C2, one obtains two 
measures vl and v2 for {Xn}. Let {X/} be the stationary Markov chain 
with an initial random vector X~ distributed according to vi ( i=  1 or 2). 
Then from (7) 

(1 - - r )  ~ --Xg) 

which implies that X ~ - J ( ~  converges to zero (Q x r coo) a.e. Since the dis- 
tribution of X~ is vi for all n �9 IN, and a.e. convergence implies convergence 
in distribution, one has vl =v2, from which one gets v(C1AC2)=0. This 
proves the theorem. 

Let f be a continuous real-valued function on C. From the ergodic 
theorem one has 

1 U f 
u.lim~ N +  i- Z f (X(co) )=  j fdv  (8) 

n = 0  

for (Q x ~ )  a.e. co. If one denotes the Markov chain starting from x by 
{X,,(x)}, then (7) and continuity o f f  imply that 

1 N 1 U f 
lira ~of (Xn(x ) )=l imN+ ~ f ( X ) =  j f dv (9) 

N ~ oo N - - " ~  n =  ~ n ~ 0  

for all x �9 C. Using this result and by considering a sequence of continuous 
functions approximating the characteristic function of a sphere in C, one 
can easily obtain a pointwise version of Lemma 2. 

Remarks. (1) In general one cannot extend (9) to f �9 L~(v). This is 
because v could be a measure which is singular with respect to Lebesgue 
measure, as is shown in the next section. If r = 2/3 and Y, = 0 or 1, v is 
supported on a subset of the Cantor ternary set. Let S ~ C = [0, 1 ] be the 
support of v. If f = g,, and we take Xo = x, where x is not an element of the 
Cantor set, it is easy to see from (2) that f(X,(x)) = 0 for all n. This shows 
that (9) need not hold for all x �9 C if we only assume f � 9  Ll(V). Of course, 
(8) is true for all f �9 from which it follows that (9) is true for 
f �9 and v-a.e.x�9 

(2) The arguments given here can be easily extended to the case 
where the destination point random variables { Y, } are i.i.d, with a general 
distribution ~ (with some assumptions about the existence of moments). 
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5. S U P P O R T  O F  v 

It has been shown that /~ ,  converges in distribution to v which is the 
distribution of Z = ~  r ( 1 - r )  j -1  Yj. The measure v is also a stationary 
measure for the Markov chain {Xn} of the random walker's position. I 
show that the support  of v can be quite intricate by considering some 
examples. It is not hard to see that v is not a discrete measure. Therefore 
the question of interest concerns the absolute continuity of v with respect 
to Lebesgue measure. I show that there exist a large range of parameter  (r) 
values for which v is supported on a subset of a fractal. Consider the 
random motion in [0, 1], where the set D =  {0, 1}. If r =  1/2 and 

Pl = Po = 1/2, 

Z r ( 1 - r )  j -  Yj= Yj 
1 

This is just the binary expansion for real numbers in [0, 1]. It  is well 
known that v is equivalent to the Lebesgue measure. (2) If p0 r 1/2, then v is 
a measure on [0, 1] singular with respect to Lebesgue measure. (3) If 
r •  1/2, then let us try to locate the invariant measure for {X,}. One can 
think of the motion of a random walker starting anywhere as being pulled 
toward either 0 or 1. If r > 1/2, then after one step the whole interval [0, 1 ] 
gets "attracted" into the set [0, 1 - r ]  w Jr, 1]. After the first step the 
walker can never enter the middle ( 2 r - 1 )  portion of the interval. 
Repeating this argument, one concludes that the support  of v is a subset of 
the middle 2 r -  1 Cantor  set. If r = 2/3, one gets the Cantor ternary set. If  
r < 1/2, this argument does not apply. In this case the nature of v depends 
more on the probabilistic structure through the choices of po and p~. If one 
considers more than two destinations in one dimension, that is, one looks 
at 0 = dt < d2 < -.- < dK = 1, then if r > 1 -  1/K, a similar argument will 
show that v is supported on a subset of a singular set. The structure of the 
singular set is slightly more complicated due to possible overlap of intervals 
(rdi, rdi + (1 - r)) and (rdi+ 1, rdi+ 1 + (1 - r)). 

The same argument can be used in higher dimensions to see that v is 
supported on a subset of a fractal for a range of parameter  values. I 
illustrate this by considering three destination points in the plane. The 
points dl,  d2, and d 3 form an equilateral triangle (see Fig. 1). After the first 
step if the walker chose dj, it ends up in the smaller similar triangle Tj. 
Successive steps restrict the walker's position to smaller and smaller 
triangles as shown in the figure. When r = 1/2, v is supported on a subset of 
the Sierpinski gasket. (4) One could obtain other fractals as the possible 
support of v by choosing the destination points dj and the contraction 
parameter  r appropriately. 
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d t  

T, 

T= 3 

d~ ,~ 
T - L  3 

Fig. 1. Random walk with three destinations. 

Some interesting open questions concern the nature of v when r < 1/2 
in one dimension and also the nature of the subset of the fractal sets which 
support  v when r is in the appropriate range�9 

6. CONCLUDING REMARKS 

Another way of stating the result /~n ~ v, when v is supported on a 
fractal set, is that the random motion gets attracted to a random walk on a 
fractal. In the language of dynamical systems, we have obtained a class of 
"strange" attractors for a random motion. The random walk described in 
this paper might be useful in generating fractal sets or subsets of fractal 
sets. 
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